NOTITIE OF SECURDARY SECURDARY SECURDARY
BRANCH - RAJAR HAT
SESSION-2020-2021
HOLIDAY HOME WORK OF MATHE MATICS
CLASS - VIII DATE-16/05/2020 WORK SHEET
MUTHE CHOICE QUESTIONS
1. 3 times (-6) times (-15) divided by 5 is:
(a)
$$-54$$
 (b) 48 (c) 54 (d) -48
2. The multiplicative inverse of $2\frac{2}{5}$ is:
(a) $\frac{-12}{5}$ (b) $\frac{5}{12}$ (c) $\frac{12}{5}$ (d) $\frac{-5}{12}$
3. Which order shows the following rational numbers in ascending order:
 $A = \frac{26}{3}, B = \frac{35}{4}, C = \frac{46}{5}, D = \frac{17}{2}$
(a) A, B, C, D (b) B, D, A, C (c) D, A, B, C (d) D, C, B, A
4. The number x and -x are additive inverses. Which number is midway between them on a number line?
(a) 1 (b) 0 (c) -1 (d) $\frac{1}{2}$
5. Which number has the same absolute value as $\frac{4}{3}$?
(a) $\frac{8}{9}$ (b) $-\frac{8}{9}$ (c) $-\frac{4}{3}$ (d) $\frac{3}{4}$
6. The sum of $-16\frac{2}{3} + 16\frac{2}{3}$ is:
(a) $32\frac{1}{3}$ (b) $33\frac{1}{3}$ (c) $-33\frac{1}{3}$ (d) 0
SOUVE MENTALY
The or False
1. Intraional numbers are non-terminating numbers.
2. There exist 10 rational numbers between 1 and 10.
3. $\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{a}{f} = \frac{a}{b} + \left(\frac{c}{d} - \frac{a}{f}\right)$ is the associative property of addition of rational numbers.
4. $-\frac{5}{7}$ is the additive inverse of $\frac{7}{5}$.

5. 1 is the multiplicative identity for multiplication of rational numbers.

Fill in the Blanks

- 1. The rational number equal to its negative is its _____.
- The product of two rational numbers is always a _____.
 The product of a negative and positive rational number is always a _____ number.
- 4. Division of rational numbers is ______ associative.
 5. The rational number 3¹/₂ lies between ______ and _____ on the number line.

Answer in One Word or a Line

- 1. What do you mean by the absolute value of a rational number?
- 2. Is multiplication of rational numbers distributive over subtraction?
- 3. How many rational numbers exist between any two given numbers?
- 4. Divisibility of rational numbers by which number is not defined?

LET'S EVALUATE

1.	Simplify: (a) $\frac{-7}{26} + \frac{16}{39}$ (b) $3 + \left(\frac{-5}{7}\right)$ (c) $\frac{-3}{10} + \frac{3}{-20} + \frac{7}{15} + \frac{9}{-10} + \left(\frac{-13}{20}\right) + \frac{13}{15}$
2.	Verify that $x + (y + z) = (x + y) + z$ for:
	(a) $x = \frac{7}{3}, y = \frac{-4}{5}, z = \frac{2}{5}$ (b) $x = \frac{3}{5}, y = \frac{-13}{15}, z = \frac{-7}{3}$ (c) $x = \frac{-2}{7}, y = 3, z = \frac{2}{3}$
3.	Subtract the sum of $\frac{1}{4}$ and $\frac{-3}{8}$ from the additive inverse of $\frac{-3}{8} - \left(\frac{-2}{7}\right)$.
4.	From what number should $\frac{-8}{21}$ be subtracted to get $\frac{29}{63}$?
5.	Simplify and write the result in the form $\frac{p}{q}$.
	(a) $\left(\frac{7}{2} \times \frac{5}{3}\right) + \left(\frac{1}{6} \times \frac{3}{2}\right) - \left(\frac{4}{3} \times \frac{13}{8}\right)$ (b) $\left(\frac{1}{4} \times \frac{1}{2}\right) + \left(\frac{-15}{7} \times \frac{7}{-18}\right) - \left(2 \times \frac{1}{4}\right)$
6.	Verify that $x \times (y + z) = (x \times y) + (x \times z)$ for:
	(a) $x = \frac{4}{7}, y = \frac{-3}{8}, z = \frac{12}{-13}$ (b) $x = \frac{4}{5}, y = \frac{-6}{7}, z = \frac{-2}{3}$
7.	Divide the sum of $\frac{-5}{4}$ and $\frac{-1}{3}$ by their difference.
8.	By what number should $\frac{-28}{15}$ be multiplied to get the multiplicative inverse of $\frac{-5}{7}$?
9.	Represent the following rational numbers on a number line:
	(a) $\frac{-3}{5}$ (b) $\frac{8}{3}$ (c) $\frac{1}{3}$ (d) $\frac{-7}{2}$
10.	Find five rational numbers between $\frac{-1}{-1}$ and $\frac{1}{-1}$.
	4. $\frac{-2}{2}$ is the additive inverse of $\frac{-2}{2}$
THINKING SKILLS	
1.	A bus is moving at the speed of $40\frac{2}{5}$ km/h. How far will it travel in $6\frac{2}{3}$ hours? If the bus is still at a
	distance of $10\frac{2}{3}$ km from the final destination, how far is the final destination from the starting point?
2.	If $\frac{3}{5}$ of a number exceeds its $\frac{2}{7}$ by 44, find the number.

3. Which is longer and by how much, perimeter of a square of side $4\frac{2}{3}$ m or perimeter of a rectangle with length $5\frac{1}{5}$ m and breadth $3\frac{2}{5}$ m?

MULTIPLE CHOICE QUESTIONS

1. The value of
$$(2)^{-5} \times (64)^{\frac{2}{3}}$$
 is:
(a) 512 (b) $\frac{1}{512}$ (c) 16 (d) $\frac{1}{2}$
2. $\left\{ \left(\frac{-2}{3} \right)^{-3} \right\}^2$ is equal to:
(a) $\frac{3}{2}$ (b) $\frac{64}{729}$ (c) $\frac{81}{32}$ (d) $\frac{729}{64}$
3. Which of the following is not equal to $\left(\frac{-2}{5} \right)^4$?
(a) $\frac{2^4}{(-5)^4}$ (b) $\left(\frac{-2}{5} \right) \times \left(\frac{-2}{5} \right) \times \left(\frac{-2}{5} \right) = (c) \frac{(-2)^4}{(5)^4}$ (d) $-\frac{(2)^4}{(5)^4}$
4. $\left(\frac{-2}{7} \right)^{-6} \div \left(\frac{-2}{7} \right)^4$ is equal to:
(a) $\left(\frac{-2}{7} \right)^2$ (b) $\left(\frac{-2}{7} \right)^{-10}$ (c) $\left(\frac{-7}{2} \right)^{-10}$ (d) $\left(\frac{-7}{2} \right)^2$
5. $\{(4)^{-1} - (2)^{-1}\} \times (3)^{-1}$ is equal to:
(a) $\frac{-1}{12}$ (b) $\frac{1}{12}$ (c) $\frac{3}{8}$ (d) $\frac{-3}{8}$
SOLVE MENTALLY
True or False

I fix is a non-zero

1. The standard form of 0.000000000942 is $9.42 \times (10)^{-11}$.

2. The value of *m* for which $\left(\frac{6}{13}\right)^{-4} \times \left(\frac{6}{13}\right)^{3m} = \left(\frac{6}{13}\right)^{5}$ is -3.

- 3. If $\{(2)^{3m-1} + 10\} \div 7 = 6$, then *m* is 2.
- 4. The usual form of $6.8 \times (10)^4$ is 6,80,000.
- 5. The value of $(2)^{55} \times (2)^{60} (2)^{97} \times (2)^{18}$ is 0.

Fill in the Blanks

1.
$$(x)^m = (x)^n \Rightarrow$$

2. $\left(\frac{p}{q}\right)^{-m} = \left(-\frac{1}{q}\right)^{-m}$

3. The standard form of $21.36 \times (10)^{-5} =$

4. The usual form of $4.39 \times (10)^3 =$

Answer in One Word or a Line

- 1. What is the reciprocal of x^n ?
- 2. What is the reciprocal of $x^m \times x^n$?

3. If
$$x^m = x^3$$
, what is the value of m?

4. What is
$$(2^2)^3$$
?

5. What is $\left(\frac{3}{4}\right)^3 \div \left(\frac{3}{4}\right)^2$?

LET'S EVALUATE

- 1. Write in the form $\frac{p}{q}$: (a) $\left(\frac{-4}{5}\right)^{-4}$ (b) $\left(\frac{2}{3}\right)^{-5}$ (c) $\frac{1}{\left(4\right)^{-2}}$ 2. Find the value of:
- (a) $\{(6)^0 + (2)^{-1}\} \times 3^2$ (b) $\{(2)^{-2} + (3)^{-2} + (4)^{-2}\}^0$ (c) $\left\{\left(\frac{1}{6}\right)^{-1} \left(\frac{1}{5}\right)^{-1}\right\}^{-1}$
- 3. Simplify:

(a)
$$\left\{ \left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-3}$$
 (b) $\left\{ (2)^{-3} + (3)^{-3} \right\} \times (7)^{0}$ (c) $\left\{ (1)^{-1} + (2)^{-1} + (3)^{-1} \right\} \div (4)^{-1}$

4. By what number should (2)⁻¹ be multiplied to get the product as $\left(\frac{-7}{4}\right)^{-1}$?

- 5. Express the following as a power with base 2: (a) $(4)^{-3}$ (b) $(8)^{-5}$ (c) $(4)^{6}$
- 6. Write as a rational number with negative exponent:

(a)
$$\left(\frac{1}{6}\right)^{4}$$
 (b) $(2)^{5}$

- 7. Simplify: (a) $\{(3)^3 (2)^3\} \times \left(\frac{2}{3}\right)^{-3}$
- 8. Find *m* if: (a) $(3)^{-7} \div (3)^{-10} = (3)^{2m-1}$
- 9. Write in standard form:
 (a) 0.0000000156 (b) 0.009801
- 10. Write in usual form: (a) $8.03 \times (10)^{-7}$ (b) $1.426 \times (10)^{5}$
- (c) $\left\{ \left(\frac{6}{7}\right)^3 \right\}^{-2}$ (b) $\left[\left\{ \left(\frac{-1}{2}\right)^2 \right\}^{-2} \right]^{-1}$ (b) $\left(\frac{-1}{4}\right)^{3m} \times \left(\frac{-1}{4}\right)^2 = \left(\frac{-1}{4}\right)^{m-6}$

(d) $(16)^3$

(c) $215.06 \times (10)^{-2}$

(c)
$$6 \times (10)^{-5}$$

its

S.

of

CHOICE QUESTIONS

Let the algebraic expression $2x^2y^2 - 3x^2y^2z^2 + 3z^2$, the coefficient of the middle term is: (c) -3 (a) 2 (b) 3 (d) -2 (3x - 4y) - (2x - y) is equal to: (c) 5x - y (d) x + 3y(a) $12x^3y^3z^4$ (b) $8x^4y^4z^4$ (c) $12x^4y^4z^4$ (d) $8x^4y^3z^5$ • The volume of a rectangular box with length l^2m^2 , breadth m^3n^2 and height l^4n^3 is: (a) fm^5n^5 (b) l^5mn (b) l^5mn (c) $4x^8y^8z^9$ (a) $l^6m^5n^5$ (b) $l^8m^6n^6$ (c) $l^6m^6n^6$ (d) $l^8m^5n^5$ (d) 8 Let $\frac{1}{x} = 3$, then the value of $x^2 + \frac{1}{x^2}$ is: (a) 7 (b) 9 (c) 5 (d) 11 and would all shame a If xy = 6 and x + y = 5 then the value of $x^2 + y^2$ is: (a) 13 (b) 11 (c) 16 (d) 12

SOLVE MENTALLY

Timue or False

L A constant factor is called a numerical factor and a variable factor is called literal factor.

$$(p+q)(p-q) = p^2 + q^2$$

- The product of two factors with same sign is positive and with different sign is negative.
- In addition or subtraction of algebraic expressions, unlike terms are grouped and the sum or difference
 of each group is found out.

Fill in the Blanks a angle to solution drive bus svitiked at agie access of this stored ow to toubord of I

- 1. In algebraic expressions, the elements separated by + or sign are called ______.
- 2. Algebraic expressions with ______ terms are called trinomials.
- 3. Terms with identical symbolic variables are called ______ terms and the others are called ______ terms.
- 4. 2x 3y, 6xy + 7 and $3a^2b + 5ab^2$ are examples of _____
- 5. Multiplication of two ______ involves repeated use of law of commutativity and the law of of multiplication.

Answer in One Word or a Line

- 1. What is an algebraic expression? Give an example.
- 2. What are factors of an algebraic expression?
- 3. Define algebraic identity.
- 4. How can you distinguish between an identity and an equation?
- 5. Which property is utilized in multiplication of two binomials?
- 6. State the standard identities.

LET'S EVALUATE

- 1. Add: (a) $\frac{3}{4}ab^2 \frac{2}{3}a^2b$, $\frac{4}{5}a^2b + \frac{2}{5}ab^2$ (b) $4x^2 + 3x 7$, $2x^2 5x + 6$, $x^2 + 2x + 4$
- 2. Subtract:

(a)
$$\frac{7}{6}x^2 - \frac{5}{6}x^3 + \frac{4}{7} + \frac{3}{7}x$$
 from $\frac{2x^3}{7} - \frac{5}{7}x^2 + \frac{x}{6} - \frac{11}{6}$ (b) $\frac{2}{3}xz - \frac{5}{7}xy + \frac{2}{3}yz$ from $\frac{3}{2}xy - \frac{7}{4}xz - \frac{5}{6}yz$
3. Simplify $\left(\frac{1}{3}x^2 - \frac{4}{7}x + 11\right) - \left(\frac{1}{7}x - 3 + 2x^2\right) - \left(\frac{2}{7}x - \frac{2}{3}x^2 + 2\right)$

4. Calculate: (a)
$$(15x^{10}y^{30}z^{20}) \times (20x^2y^2z^2)$$
 (b) $\left(\frac{2}{3}x^2y^2z\right) \times (1.5xyz^3) \times (1.15x^2y^3z^2) \times (3xyz)$

5. Find the following products:

(a)
$$\frac{-8}{27}abc\left(\frac{3}{2}abc^2 - \frac{9}{4}ab^2c^3\right)$$
 (b) $(4x^2 - 3y^2)(2x + 5y)$
(c) $(4x^2 - 5x + 8) \times (8x + 3)$ (d) $\left(\frac{3}{5}xy^2 + \frac{2}{5}x\right) \times \left(\frac{9}{2}x^2yz - \frac{3}{4}xyz^2\right)$
(e) $(4x - 9) \times (4x + 5)$ (f) $\left(\frac{4}{3}x - \frac{2}{3}y\right)\left(\frac{4}{3}x + \frac{2}{3}y\right)$

6. Simplify the following:

- (a) $4lm(l-m) 6l^2(m-m^2) 3m^2(2l^2-l) + 2lm(l-m)$
- (b) $(3x+2y)(3x+2y) (4x-3y)^2 + (2x+3y)(2x-3y)$
- (c) $(3l+4m)^2 (3l+4m)(3l-4m) (5l-7m)^2$
- 7. If $x^2 + y^2 + z^2 xy yz zx = 0$, prove that x = y = z.
- 8. Evaluate the following using a suitable identity: (a) $(99)^2$ (b) $(106)^2$ (c) 47×53 (d) $122^2 - 22^2$ (e) 36×34 9. Find the product:
 - (a) $(2y-1)(2y+1)(4y^2+1)(16y^4+1)$ (b) $(x-2)(x+2)(x^2+4)(x^4+16)$

10. If
$$x + \frac{1}{x} = 9$$
 and $x^2 + \frac{1}{x^2} = 53$, find $x - \frac{1}{x}$.