- 3.36. A cell with N/50 KCl solution offered a resistance of 550 ohm at 298 K. The specific conductance of N/50 KCl at 298 K is 0.002768 ohm⁻¹ cm⁻¹. When this cell is filled with N/10 ZnSO₄ solution, it offered a resistance of 72.18 ohm at 298 K. Find the cell constant and molar conductance of ZnSO₄ solution at 298 K. [Ans. 1.522 cm⁻¹, 4.22 × 10² S cm² mol⁻¹] - 3.37. The specific conductivity of N/50 KCl solution at 298 K is 2.768 × 10⁻³ mho per cm. The resistance of this solution at 298 K when measured in a particular cell is 250.2 ohm. The resistance of M/100 CuSO₄ solution at 298 K measured with the same cell was 8331 ohm. Calculate the molar conductivity of copper sulphate solution. [Ans. 8.31 S cm² mol⁻¹] - Calculate the specific resistance of a 0.02 N solution of an electrolyte having equivalent conductance 103 ohm⁻¹ cm² (g eq.)⁻¹. - The resistance of a decinormal solution of an electrolyte in a conductivity cell was found to be 245 Ω. Calculate the equivalent conductance of the solution if the electrodes in the cell were 2 cm part and each has an area of 3.5 sq. cm. 2. 332 × 10. [Ans. 23.32 Ω⁻¹ cm² (g. eq.)⁻¹] 3.40. Electrolytic conductivity of 0.20 mol L⁻¹ solution of KCl at 298 K is 2.48 × 10⁻² Ω²¹ cm⁻¹. Calculate its - 3.40. Electrolytic conductivity of 0.20 mol L^{-1} solution of KCl at 298 K is $2.48 \times 10^{-2} \Omega^{-1}$ cm⁻¹. Calculate its molar conductivity. [Ans. 124 S cm² mol⁻¹] - 3.41. Electrolytic conductivity of a solution containing 1 gram of anhydrous BaCl₂ in 200 cm³ has been found to be 0.0058 mho cm⁻¹. What are the molar conductivity and equivalent conductivity of the solution? (At. mass of Ba = 137; Cl = 35.5). [Ans. 241.67 S cm² mol⁻¹; 120.83 S cm² (g eq.)⁻¹] - 3.42. Calculate the equivalent conductivity of 1M H_2SO_4 solution, if its conductivity is 26×10^{-2} ohm⁻¹ cm⁻¹. (Atomic weight of sulphur is 32). (A.I.S.B. 1991) [Ans. 130 ohm⁻¹ cm² (g eq.)⁻¹] - 3.43. The resistance of 0.01 N NaCl solution at 25°C is 200 ohms. Cell constant of the conductivity cell is unity. Calculate the equivalent conductance of the solution. (A.I.S.B. 1992) [Ans. 500 ohm⁻¹ cm² (g eq.)⁻¹] - 3.44. Electrolytic specific conductance of 0.25 mol L⁻¹ solution of KCl at 25°C is 2.56 × 10⁻² ohm⁻¹ cm⁻¹. Calculate its molar conductance. (A.I.S.B. 1992) [Ans. 102.4 S cm² mol⁻¹] - 3.45. Which of the following solutions has larger molar conductance? - (a) 0.08 M solution having conductivity equal to 2.0×10^{-2} ohm⁻¹ cm⁻¹. - (b) 0.10 M solution having resistivity equal to 58 ohm cm. - [Ans. Solution (a)] - 3.46. The specific conductance of a 0.12 N solution of an electrolyte is 2.4 × 10⁻² S cm⁻¹. Calculate its equivalent conductance. (A.I.S.B. 2003) [Ans. 200 S cm² (g eqiv)⁻¹] - 3.47. When a certain conductance cell was filled with 0·1 mol L⁻¹ KCl solution, it had a resistance of 85 ohm at 298 K. When the same cell was filled with an aqueous solution of 0·052 mol L⁻¹ of an electrolyte, the resistance was 96 ohm. Calculate the molar conductance of the electrolyte at this concentration. (Specific conductance of 0·1 mol L⁻¹ KCl solution is 1·29 × 10⁻² ohm⁻¹ cm⁻¹). (A.I.S.B. 2004 Supp) [Ans. 220-2 S cm² mol⁻¹]