I. Very Short Answer Type Questions

Classify the following as rational or irrational:

(i)
$$3 + \sqrt{5}$$
 (ii) $\frac{\sqrt{12}}{\sqrt{3}}$ (iii) $(2 + \sqrt{3}) + (2 - \sqrt{3})$ (iv) $\pi - 2$ (v) $\frac{1}{\sqrt{5}}$ (vi) $(\sqrt{2} - 1)^2$

Identify the rational number among the following numbers.

(i)
$$\sqrt{\frac{64}{8}}$$
 (ii) $\sqrt{98}$ (iii) $\frac{\sqrt{98}}{\sqrt{2}}$ (iv) $\sqrt{14}$

3. Identify an irrational number among the following numbers.

(i)
$$(1+\sqrt{3})-(\sqrt{3}-1)$$
 (ii) $2+5\sqrt{5}-\sqrt{125}$ (iii) $\frac{\pi}{2\pi}$ (iv) $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}$

4. Simplify the following expressions:

(i)
$$(5+\sqrt{7})(2+\sqrt{5})$$
 (ii) $(5+\sqrt{5})(5-\sqrt{5})$ (iii) $(\sqrt{3}+\sqrt{7})^2$ (iv) $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$

5. Simplify each of the following expressions:

(i)
$$(3+\sqrt{3})(2+\sqrt{2})$$
 (ii) $(3+\sqrt{3})(3-\sqrt{3})$ (iii) $(\sqrt{5}+\sqrt{2})^2$ (iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

I. Very Short Answer Type Questions

- 1. Check the truthfulness of the following statements. Give reason in support of your answer:
 - (i) Some rational numbers are integers.
 - (ii) Every whole number is a natural number.
 - (iii) Every integer is a rational number.
 - (iv) There are infinite rational numbers between two integers.
 - (v) Zero is a rational number.
- 2. Represent the following rational numbers on the number line: $\frac{-8}{3}$, $1\frac{2}{3}$, $\frac{3}{4}$, $-2\frac{1}{2}$.
- 3. Find a rational number between -3 and 5.

. Short Answer Type Questions-I

- 4. Find five rational numbers between 1 and 2.
- 5. Find three rational numbers between $\frac{2}{7}$ and $\frac{3}{7}$.
- 6. Find three rational numbers between $\frac{3}{5}$ and $\frac{7}{8}$.
- 7. Find five rational numbers between $\frac{\sqrt{5}}{7}$ and $\frac{4}{9}$
- 8. Find two rational numbers between $1\frac{2}{5}$ and $1\frac{3}{4}$.
- 9. Find a rational number between $\frac{7}{5}$ and $\frac{8}{5}$.